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FOREWORD 

This report presents the results of work performed by Lock- 

heed's Huntsville Research & Engineering Center while under sub- 

contract to  Northrop Nortronics (NSL PO 5-09287) for Marshall 

Space Flight Center (MSFC), Contract NAS8-20082. Thie task was 
conducted in response t o  the requirement of Appendix A-1, Schedule 

Order No. 23. 

The NASA technical coordinator for this study is O.E. Smith 
of the Aerospace Environment Division of the Aero-Astrodynamics 

Laboratory. 
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SUMMARY 

In this document the probability that the rnth largest  of the 

past L observations will be exceeded k t imes in N future t r ia ls  

is derived. The expected number of exceedances and the variance 

a r e  also found. An interpolative scheme is presented for defining 

probabilities associated with values not actually observed. 

The EDNE computer program, which calculates the proba- 

bilities of exceedances and plots the interpolative solution, is dis- 

cussed. A user ' s  manual and listing of this program is also included. 

Several asymptotic distributions for large future sample sizes 

a r e  developed. 

iii 
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i c  

I 

Section 1 

INTRODUCTION 

In many situations, past observations or  results a r e  used t o  predict 
future events. 

times in the past, it is often desirable to make probability statements about 

the values it will assume in N future observations. At t imes it is sufficient 

to study the number of t imes a given value is surpassed in the future tr ials.  

For instance, i f  the wind is great enough to  blow over a building or  a vehicle 

erect on the launch pad, the exact strength of the wind is not important. For 

such cases  the theory of exceedances has been developed. 

If a variable, such as wind speed, has been observed L 

. 

This document ie intended t o  be a basic treatment of the theory of ex- 
The theoretical development is quite complete, and a practical ceedancee. 

example ie included. For a more authoritative t reat ise  of the subject, the 

reader is referred t o  Chapter 2 of E.J. Gumbel's Statistics of Extremes, 

Columbia University Press ,  New York, 1958. 

I 
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Section 2 
THEORETICAL DERIVATION OF THE DISTRIBUTION 

O F  T H E  NUMBER O F  EXCEEDANCES 

A set  of L observations - xl,  x2,. . . , xL - has been obtained in such a 

manner that the observations comprise a random sample; that is, the obser- 

vations a r e  independent random variables drawn from the same probability 

space with cumulative distribution function F [F(x) = Pr (an observation I. x)]. 

The random variables a r e  assumed to  be continuous. The distribution function 

F, however, need not be known. The observations a r e  arranged in descending 

order  and written x ( ~ ) ,  x ( ~ ) ,  . , . , x ( ~ ) ,  where. x 

mth la r g e s t . 

1 x ( ~ ) L  . . . 1 x ( ~ ) .  

(m) 

Thus, 
(1) 

is the second largest ,  and x is the x(2) is  the largest observation, 

In the future a new set of N observations - y l , .  . . , yN - will be drawn 

from the same population. 

than x 

2, .  . . , L). 
that k observations out of N will exceed the mth largest  of L past  observa- 

tions] is derived below. 

Of these N observations, k of them will be greater 

the mth largest of the past L observations (k = 0 ,  1, .  . . , N; m = 1, 

The probability density function of k [p(L, m, N, k) = probability 
(m)' 

2.1 THE PROBABILITY DENSITY OF THE N U M B E R  O F  E X C E E D A N C E S  
A S  A FUNCTION OF THE INITIAL DISTRIBUTION 

partitions the rea l  line into (m) ' The mth largest of the L values, x 

If y is 
(m) - two sections. For any number y, either y C o r  y > x  

drawn from the underlying probability distribution of the observations, then 
- X(m) 

P r ( y  > x ( ~ ) )  = 1 - F ( x ( ~ ) )  = 1 - Fm 

2 
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Thus, i f  one value is drawn 
(m)' where Fm is the distribution function for x 

in  the new sample (N  = l ) ,  the probability that it does not or does 

exceed x 

. 

(m) i8 

m Pr(x exceeded 0 timeeIN = 1) = F 
(m) 

Pr(x exceeded 1 t i m e / N  = 1) = 1 - Fm (m) 

where Pr(AI B) denotes the conditional probability of A given B. 

If two independent observations y1 and y2 are made (N = Z), then the 

Pr (x exceeded 1 timelN = 2) = P r ( y l  S x ( ~ )  and y2 > x 1 (m) (m) 

(m) (m) 
t Pr (y l  > x  and y 2 1 x  ) 

= Fm(l- Fm) t (1 - Fm)Fm 

= 2(1 - Fm)Fm 

3 
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Extending this procedure to N future observations, 

N 

Pr(x exceeded 1 timeIN) = Pr(y i  > x and a l l  others I x ) 
(m)  (m) (m) 

i = l  

= N(l - F ) 9 - l  m m  

N 
Pr(x exceeded N-1 timesIN) = Pr(yi  S x ( ~ )  and all others > x ) 

i = l  
(m) (4 

N-1 
Fm = N(l - Fm) 

N = (1  - Fm) 

This can be written 

P r ( x  exceeded k tirnesIN) = (t) (1 - Fm) k Fm N-k , k = O , l , . . . , N  (2.1-1)  
(m) 

m =  1 ,2 ,  ...,L 

. 

4 
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where 
N! (r) = k! (N  - k)! 

A random variable which follows the above density function is said to have a 
binomial distribution! 

As the form given in Equation (2.1 - 1) depends upon the value Fm, the 

probability should be written as a conditional probability. 

that the mth largest  of L past observations will be exceeded k t imes in N 
future observations, given the distribution Fm, is 

The probability 

5 

FA-B is the (kt1)  t e r m  in the The expression A ) ( l - ~ m )  m 
expansion of (11 F,] + Fm)*. Thus, 

* 

A! (i) = B! (A - B)! 

is called a binomial coefficient. 
used repeatedly in the theoretical development: 

The following identities a r e  

ril) = A - B t l  (") B 

(2.1-2) 
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2.2 THE PROBABILITY DENSITY O F  THE NUMBER O F  EXCEEDANCES 
FREE O F  THE INITIAL DISTRIBUTION 

In many cases the value F, is unknown and a form must be found that 

is independent of the distribution F,. -- 
function of Fm, g(F,) , is derived. 

To accomplish this, the density 

The marginal density function is then 

The previous sample has been drawn and arranged in descending order  

- X ( 1 ) ’  * .. I X ( L ) ;  these values a r e  known and considered constant. Therefore,  

the sequence F1, . . . , FL = F ( X ( ~ ) ) ,  . . . , F(x(L)) is a l so  fixed. 

taking a new sample and arranging it in descending order - Y ( ~ ) ,  . . . , y ( ~ ) .  

The probability distribution of F, is computed as the probability that the 

mth largest  value in the new sample will not be greater than the mth largest  

in the past sample. 

Consider 

Since F ( x ( ~ ) )  is a distribution function, it is a nondecreasing function 

Thus, the distribution function of Fm is of x and is bounded by 0 and 1. (m) 

G(Fm) = Pr (at least  L - m t l  values of L a r e  I x ) (4 

G(Fm) = Pr (at most m-1 of L exceed x ) (m) 

m-1 

G(F  ) = Pr(x exceeded k timesIN = L) 
m (4 

k = O  

6 
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By Equation (2.1 - l ) ,  this i s  

m- 1 

k=O 

The density function of Fm i s  thus 

m- 1 

g(Fm) = - ( 1  - Fm)k F k - 1  
k =  1 

m- 1 

k = l  

k = l  

k = l  ' 

0 L-0-1 + ( t ) L ( l  - Fm) Fm 

m- 1 _-- 

k L-k-1 
-k ( i ) ( L  - k ) ( l  - Fm) Fm 
k =  1 

7 
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m - 2  

j = O  
j = k - 1  

m- 1 

j = O  
j = k  

m - 1  L-m 
g(Frn)  = (:)-(I - Fm) Fm , 0 5 F m < - 1  (2 .2-2)  

Subs t i tu t ing  Equat ion (2.1-2)  and  Equat ion  (2 .2-2)  i n t o  Equa t ion  (2.2-1) ,  

the m a r g i n a l  d e n s i t y  func t ion  b e c o m e s  

1 
N L  m t k - 1  N t L - ( m + k )  

P ( L , m , N , k )  = (k) (m)m l ( 1  - Fm) Fm dFm 
0 

(2.2 - 3) 

8 
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I The above equation gives the probability that the mth largest among L 

past observations will be exceeded k t imes in N future trials. 

is distribution free; i.e., it does not depend upon the underlying distribution 

function F. 

This formula 
I 

I 

1 
I 

I 

Equation (2.2-3) can be written a s  

(2.2 -4) ( L-m 
p(L ,mJN,k )  = 

2.3 THE MEAN AND VARIANCE O F  THE NUMBER O F  EXCEEDANCES 

Given m, L, and N, the expected or  mean number of exceedances is com- I 

puted a s  

N 

E(k) = k p ( L , m , N , k )  = 
k=O k =  1 

t [L ta  - [mtl] - 
[Ltl] - [mtl] 3 

N -  1 

("LL) E(k) = ( j + 1 )  
j = O  

(NLL) E(k) = 
[Lt 13 - [mt 13 

9 
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I By Equation (2.2-4), this is 

j = O  

N t L  N t L  

Therefore] the mean number of exceedances i a  

m N  E(k) = - L t 1  

As would be expected, the mean number of exceedances increases with m. 

The second central moment is computed a a  

N NtL-m-k k tm-1  ( L-m ) (  m - 1 )  

k=O 

For values of N greater than one, this can be expanded a s  

(2.3-1)  

N 
N+L WtL-m-k )( ktm-1  m - l )  t 5 

k = 2  k=O 

10 
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N-21 t [L+2] - [mt2] - j rLL) E(k2) = ( j + 2 ) ( j +  1) c [L~z] - [mt2] 

N - 2  

j = O  
j =k-2 

c 

N t L  + ( ) E(k) 

N-2  vLL) E(k 2 ) = ( m t  1) m 

2 (m+l)  mN(N-1) mN 
E(k  ) = ( L t l ) ( L t 2 )  L t 1  

The variance is, therefore, 

var(k) = E(k2) - [E(k)]2 

, N > 1  mN (N+Lt 1 ) ( L-mt  1) 
var(k) = 

(Lt1l2 (Lt2)  

11 
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I The variance is 

For the case in which N = 1, the density function is 

L t l -m-k  k tm-1  

L t 1  
p ( L , m , N , k )  = ( L-m )( m-1 , k = 0 , 1 ,  N =  1 

2 2 1 
var (k)  = E(k2) - [E(k)I2 = 0 p (L ,m,  1, 0)  t 1 p(L,  m, 1, 1) - 

( L t  u2 

, N = l  1 1 - L var(k)  = - - 
L +  ( L t  1 ) 2  - ( L t 1 I 2  

Thus, the form given below holds for a l l  positive integers N. 

m N ( N t L t 1 )  (L-m+l)  var(k) = 
( L t  1)2 ( L t 2 )  

(2.3-2) 

Actually, Equations (2.3- 1) and (2.3-2) should be written in the conditional 
form. 

m N  = - 
L . t  1 E(k IL, m, N)  

mN(NtL+l) ( L - m t l )  var(k1 L, m, N )  = 
( L + U 2  ( L t 2 )  

(2.3-3) 

(2.3-4) 

It can be shown that var(k1 L, m, N)  = v a r ( k [  L, L - m t l ,  N) ;  i.e., the variance 

of the mth largest  is  a l so  the variance of the (m-1) smallest observation. 

Note that if L and N a r e  held constant, the variance is smaller for small or  

large values of m than it is  for values near  N/2. In fact, the variance is  a t  
a minimum for m = 1 or m = L.  This is contrary to  what one would at f i r s t  
expect. 

12 
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In summary, the probability of having k values in N future observations 

exceed the mth largest among L past observations is given by: 

I 
l 

The expected number of exceedances and the variance are 

mN E(k) = - L + l  

IlnN(N+L+l) ( L - m t l )  var(k) = 
( L + U 2  (L+2)  

0 

c 

1 3  
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Section 3 

PRACTICAL TECHNIQUES FOR REAL DATA 

Several questions that arise when the theory is applied to real data must 

be considered. 
bilities must be found; the difficulty in interpretation caused by repeated values 

in the initial sample must be overcome; and a procedure should be developed 

for estimating the probability of exceeding a value that was not actually obtained 

in the past sample. 

t e rms  of the example below. 

For instance, a convenient method of displaying the proba- 

Suggested solutions to  these problems a r e  presented in 

The annual peak winds, in knots, at 10 meters  above the ground at Cape 

Kennedy, Florida, for the years 1950 through 1966, are the following: 

Y e a r  150 '51 '52 153 '54 '55 '56 '57 '58 '59 I60 

Year '61 162 '63 '64 '65 '66 
I 

Wind Speed 42 39 43 53 48 48 

Arranged in descending order ,  the past  sample i s :  

I m 1 2 3 4 5 6 7 8 9 10 11 
I 

Wind Speed 62 60 59 58 53 53 48 48 47 46 44 

m 12 13 14 15 16 17 

Wind Speed 43 43 43 43 42 39 

14 
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In this case the size of the past sample, L ,  is 17. 

interest ,  then N is equal to 4. 

If four future years  a r e  of 

3.1 D W U Y I N G  THE PROBABILITIES 

A convenient way to  present the probability density function is in the form 

of a table, which for €he above example is shown in Table 1. 

bility that in four future years  the peak wind for exactly one year will exceed 60 
knots, found in the column m = 2 and the row k = 1, is 0.273. The probability 

of at most 2 exceedances over 59 knots is the sum of the probabilities of 0 ,  1 

and 2 exceedances over the third largest  observation (0.511 t 0.341 + 0.120 = 0.972). 

The expected number of exceedancee over the smallest value of 39 knots is 3.78. 

Each column (exclusive of mean and standard deviation) adds to  one, since it is 

a t rue probability density of k, the number of exceedances. 

Thus, the proba- 

Note that the table depends only upon the sample sizes L and N and not 

upon the actual obaervatione themselves. In this sense, the exceedances 

approach is "probabilirtic" and not "statistical. 

3.2 REPETITIONS IN THE INITIAL SAMPLE 

A problem arises in determining the probability that 5 3  knots will be 

exceeded k t imes in the Mure .  

largest  observations are equal to 53 knots. 

This is because both the fifth and sixth 

In the example given, as well as in most practical situations, the 

a s  sumption that each observation i e  drawn from a continuous distribution 

is not valid. 

bility of obtaining two equal observations is zero. 

limits of the precision of the measuring device, the observation is  actually 

a d iscre te  variable. 

one, not be equal i f  a sufficiently accurate measuring instrument were used. 

If the underlying distribution is truly continuous, the proba- 
However, because of the 

The two observations of 53 knots would, with probability 

15 



Table 1 

THE PROBABILITY THAT THE MTH LARGEST AMONG 17 PAST 
OBSERVATIONS WILL BE EXCEEDED K TIMES IN 4 FUTURE TRIALS 

i -  - REAN _ _  3.20000000f 0 1  ~ 

1 SDEV Oo10760552E 01  

M 
~ .- ---- ~ ' 

~ 

K 13 
0 Oo11695905E-01 

~ -_ 1 . -0.76023387E-01 

3 0.38011694E 00 
2 Oo22807016f 00 

I 4 0e30409355E 00 

K 1 2 3 4 
0 0.80952381E 00 Oo64761904E 00 0o51127E18E 00 Go397ttC8LE C C  
1 0.16190475E 00 0.27268170E 00 O034G85iA2E G O  G.3742CE93E O i  83 

2 0.25563909E-01 0.68170425E-01 0012C30C756 00 0.17543e596 O C  
3 0.28404343E-02 Oo10693400E-01 0025C62t5SE-01 C;467€>622E-? 1 

. _ -  4. , Oo167084376-03. 0083542186E-03 0.25C62tSSE-02 Go58475529E-52 
f 

MEAN 0022222222E 00 0.44444444E 00 Co66666e66E 00 Co828€8&89E O C  
SDEV 0.492965466 00 Co67634303E 00 Oo80204417E 00 0.89471772E O C  

K 5 
0 Oo30409355E 00 
1 0o38011694E 00 
2 0*22807016€ 00 
3 0.76023387E-01 
4 0.11695905E-01 

_ _  
N A N  ' 0 ~ 1 L l l l l l l E  01 . 

SOEV 0.96393713E 00 

6 7 e 
Oo22807017E 00 Oo16725145E 00 Co1194E532E G C  
0.36491226E 00 Oo33450fSlE 00 C i 2 9 4 C t E 4 8 K  O C  
Oo27368420E O C  Cm308771QlE 00 C . 3 3 ~ E 2 7 0 4 t  3C 
Oo11228069E 00 Co15438595E 0 0  3.2005CL23t O C  
0 02 1052630E-0 1 Co350e7716E-01 C A 55 137E396-0 1 

C.13333333E 0 1  0.155555566 0 1  6.1777777aE 0 1  
0.10145146E 01  Oo10491495E 01 0;&06C.3922€ 0 1  

K 9 10 11 112 _ _ _  - - 0 -  0082706761E-01 0.551378396-01 0.35C87716E-01 C;2105263QE-0 1 
1 0.24812028~ 00 0.20050123~ 00 0.1543854;5~ 00 e . i i 2 2 . e c 6 9 ~  o c  
2 0.33834584E 00 Co33082704E 00  Co30877191E 00 GA273tE420E C C  
3 0.240120286 00 0.2940684&€ 00 0.33450291E 00 0036451226E O C  
4 0o82706759f-01 Co11946532E 00 Oo167251456 00 Qo228C7C17E O G  

0022222222E 0 1  0o24444444E 01  . GA266tEt67E 0 1  
0.106939226 01 Co10491495E 0 1  Gi10145146E 0 1  

14 15 1c 
0 e 58479 529 E-0 2 C 2566 26 5 SE-0 2 G e 8 3 54 2 186E-0 3 
0.46783623E-01 Co25062t5SE-01 0 .  106534OOE-01 
0.17543859E O C  O012C30C75E 00 Gi6817C425E-0 1 
0.37426899E 00 Oo34085212E 00 G.272tE170E O C  
0.39766081E 00 0o51127E18E 00 QA64761S04E O C  

K A7 
0 0.16708437E-03 
1 0o28404343E-02 

.-- 2 .  0.25563909E-01 
3 Oo1619047kE 00 
4 0.80952381E GO 

PEAN 0.37777778E 01 
SOEV Om492965466 00 
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The safest way of quoting the probability of a l l  four future values being l e s s  

than 53 (k = 0) is l'between 0.228 and 0.304." 

3.3 I N T E R P O L A T I V E  P R O C E D U R E  FOR VALUES B E T W E E N  THE GIVEN 
OBSERVATIONS 

Suppose that the probability of not exceeding 61 knots (k = 0 )  is desired. 

Since 61 knots was not actually observed, the probability cannot be read from 

the table. 

as a function of m. 
does not total one. 

If L, N and k are held constant, p(L, m, N, k) can be considered 

This is not a probability density function on m, since it 

A s  61 lies between the l a rges t  and the second largest  observations, ?he 

probability of not exceeding 61 knots would logically lie between 0.648 and 

0.810. For 
purposes of interpolation, the author suggests 

The rank of m =  14 could artificially be aseigned to 61 knots. 

l l m  S L  1 f (N+L-m- k+ 1 )T(k+m) 
p(L' m y  Ny k, = r(L-m+l) J'(N-k+l) f(m) f (k+l)  

Here the gamma function is defined 

Q) 1 
tu-1 -t 1 u-1 

e dt = (ln c )  dt 

0 0 

A l s o ,  r(u+l) = u r ( u )  and, i f  u is an integer, r ( u + l )  = u! 

The advantages of this approximation is that a smooth curve is obtained 

that matches the values for which m is exactly an integer. 

(k =0 ,  1, 2, 3 ,4)  for this example ( L =  17, N =4)  a r e  shown in Figures 1 through 

5. 

The five curves 

17 



Figure 1 - Interpolative Approximation, L = 17,  N = 4 ,  K = 0 
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b 

I 
I 

f 

Figure 2 - Interpolative Approximation, L = 17, N = 4 ,  k = 2 
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Figure 3 - Interpolative Approximation, L = 17, N = 4,. k = 2 
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Figure 4 - Interpolative Approximation, L = 17, N = 4 ,  k = 3 
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Figure 5 - Interpolative Approximation, L = 17,  N = 4 ,  k 4 
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The interpolative scheme cannot be used for values greater than the 
largest  observation or  less than the smallest observation. However, it can 

be said, for example, that the probability that the annual peak wind will not 

exceed 6 3  knots in four years  i s  at least 0.810. 

n'ote that this approximation is the author 's  own invention and, as far 

a s  she knows, has not been developed by others. 

23 
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Section 4 

1'HE EDNE PROGRAM ---- 

The Exact Distribution of the Number of Exceedances (EDNE)  computer 

program calculates the probability that the mth largest  among L past obser- 

vations wi l l  be exceeded k t imes in N future tr ials.  
exceedances a n d  the standard deviation of the number of exceedances i s  deter-  

mined fo r  txich Lalue of m. 

puted by the formulas: 

The mean number of 

The means and the standard deviations a re  com- 

m N  E(k) = - L t l  

8 .  dev. (k) = [var(k)]'l2 = m N  (NtL+l)  (L -mt l )  

( L t 1 I 2  ( L t 2 )  

The probabilities a r e  based upon the equation: 

To avoid overflow in the computer, however, the following set of relationships 

is  utilized: 

(L - m) (k t m) 
P(L, m, N, k) m ( N t  L -m - k) p(L, m t l ,  N,  k)  = 

I 24 
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b 

(k+m) (N-k) 
p(L, m, N, k+l) = p(L, m, N, k) (N+L-m-k) ( k t l )  

p(L, L-mtl,  N, N-k) = p (L, m, N, k) 

The program will also,  upon request, supply plots of the approximating 

The probability is plotted as a function of function discussion in Section 3.3. 

m ,  where m varies from 1 to  L in increments of Am, an input quantity. 

The program was written for the IBM 7094 digital computer and the IBM 

4020 plotter. 

4.1 INPUT 

The first data card contains the four positive integers L1, L2, N1 and 

N2 in a 413 format. These are the bounds on L and N. 

L and N, where L1 I L 4 L2 and N1 I N I N2, the program will output the 

corresponding table and/or set of plots. 

numbers OPT1, OPT2, DELM in a 3312.8 format. 

only if OPTl = 1, and the plots will be  given only i f  OPT2 = 1 .  

DELM determines the increment of m for the plots. 

For each pair  

The second card contains the rea l  

The tables will be output 

The value 

After a set  of data, the program reads another card under an I3 format. 

If this card has an  integer greater than zero, the program will read another 

case; i f  this field is blank, the program will exit. 

4.2 OUTPUT 

For a given pair  of positive integers L and N and for  OPTl = l . ,  the 

The columns a r e  identified by the rank m of output is a (N t 3) by L table. 

the past  L observations. 

deviation of the number of exceedances for the respective value of m .  

first N + 1 rows a r e  identified by the number of exceedances, k .  

The last  two rows list the mean and standard 

The 

Thus, the 

25 
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number in the ( k t  l)St row and rnth column is p(L, my N, k), the probability 

that k values of N will exceed the rnth largest  of L past  observations. 

If OPT2 = l., N +  1 plots will be made for each pair  L and N. 

The number of points 

Each 

plot corresponds t o  a value of k between 0 and N. 

on each plot is ( L -  l ) /DELM t I ;  this should not exceed 1024. 

4.3 SAMPLE CASE 

Shown in Tables  2 through 5 and Figures 6 through 16 is a sample case 

from the  E D N E  program. 

below, followed by a blank card: 

For this case,  the data consists of the five cards  

I I 

a I I 

Data for Sample Case 

26 
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Table 2 

THE PROBABILITY THAT THE MTH LARGEST AMONG 16 PAST 
OBSERVATIONS WILL BE EXCEEDED K TIMES IN 4 F U T U R E  TRIALS 

H 

2 
Oo63157894Z C U  
0.2907017SE C 0  
0 . 7 4 3 0 3 4 0 3 E - L l  
O o 1 2 . 3 8 3 9 O O C - U A  
0 1 o i  1 YY 17i-~2 

4 
0037564439k OU 
0 .37554699- -  00  
0.1b7S2249t- 0 0  
0.5366.356Yt-Ul 
0.72 2394  19 t-- 0 7  

D.70552235t 00 
O o B L 3  5 2 3 4  Lt 00 

K 
0 
1 
2 
3 
4 

6 
0.20hS0474E GO 
o,3s+1?735SE to 
00ZJ606609C C O  
0 . 1 2 7 1 4 1 3 7 t  00 
0 2 60Ot 1 3 0 t - U  1 

M E A Q  
S O E V  

10 
0 o 4 3 3 4 3 6 5 0 E - C  1 
0.17337460E i b  
0.3 176534%E 00 
0 . 3 1 T b 5 3 4 4 t  CO 
0,14757451F 00 

0 , 2 1 1 7 ~ 4 7 O E  01 
o,lo?R2531E 01 

0.2588i35JE 01 
O o 1 3 3 2 3 4 3 ? €  0 1  

13 
U 7 2  2 3 s  419E-02 
0.53663569F-01 
O.lb192249E 00 
U.37364499E 00 
I). 3756449Ylr 00 

0 . 3 5 2 3 4 1 1 7 f  0 1  
0.bY50CY38k 00 

27 
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I 

Table 3 

THE PROBABILITY THAT T H E  MTH LARGEST AMONG 16 P A S T  
OBSERVATIONS W I L L  B E  E X C E E D E D  K TIMES IN 5 F U T U R E  TRIALS 

M 

ME AIJ  
S D E V  

K 5 10 

1 U o 1 4 5 9 5 3 1 1 E  00 0.10319917E b O  
o o . 3 8 9 2 c 0 z e E -  o 1 0. z 2 703 8 i 6 t - 0  1 

2 0 . 2 5 5 3 t 0 2 8 E  00 0.22703817E 00 

4 0.1344C414E 00 0 .24595802E 00 
3 0.7YlQC622F 00 0 . 3 0 2 7 1 7 5 6 t  00  

5 0.6324~347C-tll 0 .93353207E-01  

14 
0. AU3AY917t-uZ 
0.103 1 9 9  17k-Ul 
0.5 1 5 3‘3 5 4 SE -0  1 

0.350o7718E 00 
o o 1 6 5 1 1 8 0 T F  UO 

0 o 4 2 1 0 5 2 b 3 E  C O  

28 

11 
Qs12322UOOk-01 
, U . ~ J L  W + S ~ E - O L  
Oo191b3O54t  00 
O e 2 4 5 1 4 Y 6 2 k  00 
0 . 2 9 5 1 4 9 6 2 t  O U  
0 . 147 5 7 4 8  1 t 0 0  

0.3235iY4LE 0 1  
0 .11813624f  0 1  

0 o 4 4 1 1 2 6 4 6 E  01 
0 . 7 9 6 4 7 4 3 5 f  00 

1 2  
0.4 19 1 9 4 9 9  Z-0 2 
0.4 127Y667 t -0  1 
OeL3415892E O C  
0 o 2 6 8 3 1 7 @ 4 E  00 
0 . 3 3 5 3 9 7 3 0 t  00 
0 . 2 1 4 6 5 4 2 7 f  00 

0 . 3 5 2 ’ 3 4 l l l E  n 1  r )  

0 . 1 1 2 6 3 8 4 9 t  0 1  

0 . 4 7 0 5 8 8 2 3 ~ -  0 1  
0. Sol56263t 00  
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Table 4 

THE PROBABILITY THAT THE M* LARGEST AMONG 100 PAST 
OBSERVATIONS WILL BE EXCEEDED K TIMES I N  1 FUTURE TRIAL 

K 
0 
1 0 

ME ar i  
S C E V  

8 

O . Y ~ O O 9 U O L E - 0 2  
U m  99003300E-01 

0 L Yt 019bOE-C 1 0 - 2  97 0297 0t-0 1 O m  3 Y 6 U 3 9 6 0 E - 0  I 
0113Y31928E 0 0  0.16976fblt 00 00 19502689t  0 0  

MEAN 
SDEV 

K 
c 
i 

M c  A“; 
S R E V  

0 069lOE Y lo t -01  
bm2949CO88E 00 

K 
0 
1 

M E  t4.J 
5 D E V  

K 
0 
1 

N E A ‘9 
5 D E V  

K 
0 
1 

22 22 24 
0 .76LL?St i$~  bo 0.772277u9E 00 0 - 7 ~ 2 3 7 6 0 9 5  cC1 
0 ,217d2174F ~0 0 , 2 2 1 7 2 2 7 3 f -  O u  0 . 7 5 7 5 2 3 7 2 ‘  00 

P E A %  
S D E V  

29  
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Table 4 (Continued) 

25  
O o 7 5 2 4 7 5 1 0 k  00 
O.24752470t 00 

2 t, 
0 . 7 4 2 5 7 4 1 0 L  0 0  
0 .25742568E 00  

2 7  
0.732ti7211t 0 0  
0.20732b67E 00 

K 
ti 
1 

ME A ; i  
S C E V  

K 
0 
1 

M E A N  
S O E V  

K 
c, 
1 

MEA’l  
S O E V  

K 
0 
1 

MEAPr 
S D E V  

.K 
b 
L 

M E A ‘.: 
S D E V  

K 
(J 

1 

MEAN 
S O E V  

K 
0 
I 

M L A %  
S O F V  

0 . 2 4 7 5 i 4 7 5 f  00 
0 . 4 3 1 5 7 4 1 5 E  00 

O.2073267.3E 0 0  
0 .44256429E 00 

2 9  
U .71287112E 00 
0 . 2 E 7 1 2 8 6 4 C  00 

3c: 
0 - 7 0 2 Y 1 0 1 2 E  UO 
0 . 2 Y 7 0 2 9 b 3 f  GO 

0 . 3 1 6 d 3 1 6 S E  00  
0 . 4 6 5 2 4 1 1 9 E  0 0  

3 2  
0 . 6 7 3 2 t 7 1 4 t  00 
0 . 3 2 t T 3 2 5 9 t  UO 

3 6  
0 . 6 4 3 5 6 4 1 6 ~  0 0  
u . 7 5 6 4 3 5 5 3 k  00  

0.336633062 0 0  
0o47255039t GO 

0 . 3 4 6 5 3 4 0 5 t  3 0  
0.475dk593E 00 

37 
O o 6 3 3 6 6 3 1 6 E  00  
0 m 3 b 6 3 ? b 5 1 E  00 

3 d  
0,6237hL18E ti0 
0 . 3 I 6 2 3 7 5 0 F  LO 

40 
0 o 6 0 3 9 6 U L 9 F  00 
0 . 3 9 6 0 3 9 4 6 F  00 

0 m 3 6 5 3 3 b 6 3 F  00 
0 .4818C297E 00 

0 . 3 9 6 0 3 9 6 O K  0 0  
O a 4 t Y 0 7 2 E 3 E  00  

-2  
0 . 5 8 4 1 5 3 2 0 F  U 0  
Oo41534143C Cc\ 

43  
0 . 5 7 6 2 5 7 2 0 E  0 0  
0 . 4 2 5 7 4 7 4 0 E  90 

44 
0 . 5 6 4 3 5 6 2 1 t  0 0  
0 . 4 3 5 6 4 3 3 9 E  UC 

0 . 4 2 5 7 4 i 5 7 L  01) 
0.49445503E 00 

0 . 4 3 5 6 4 3 5 6 ~  0 0  
0 . 4 Y 5 6 4 0 Y S t  O ( J  

48 A 

0 . 5 L 4 7 5 2 2 4 k  O C  
0 . 4 7 5 2 4 7 3 0 t  00 

45 
L o  5 5 4 4 5  5 2 2 t  60 
O o 4 4 5 5 4 4 3 7 E  00 

+6 
0 . 5 4 4 5 5 4 2 3 t  CO 
0 . 4 5 5 4 e 5 3 5 c  00 

0 . 4 4 5 5 4 4 5 5 E  00 
0 . 4 9 7 0 2 5 7 5 E  00 

0 . 4 5 5 4 4 5 5 4 f  G O  
0.4 ‘4901094E 0 0  

5 1  
0 0 4 9 5 0 4 Y 2 6 L  0 0  
0 .50495026E 0 0  
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53 
Oo47524730€ 00 
0 . 5 2 4 1 5 2 2 4 E  00 

K 
u 
1 

0 o S 3 4 6 5 3 4 6 E  GO Om54455445E 0 0  Oo55445544F 00 
0.4967Y749f CO 0.49E01094E 0 0  Oo4U7OL575C 00 

MEALP! 
J O E V  

0,52415247E 00 
0.49Y?c694€ 00 

57 
0143564334E 00 
0 , 5 6 4 3 5 6 2 l . E  00 

b < 
0 
1 

HEArl 
S D E V  

8,56435643E 00 
00C95d40Y5E 00 

- _ _  
62 6 3  6 6  

Om39bL3848, C 0  Oo37621’50f 00 LJo3t~6336511 0 U  
0.61356118F CO O m 0 2 3 7 k 2 1 8 t  00 Oot3356316E O D  

K 
0 
1 

M E  A N  
S G E V  

(Jw6039tU39E 60 
0 0 4 6 9 0 7 2 5 3 E  00 

Oo613361386 L G  Uob237c237E 00 Cmb3366336E 00 
O m 4 6 ~ 8 6 3 0 0 t - . U Q  - . Oa+d44+073k  00 Q.’i8180297L 00 

K 
fJ 

1 

ME A51 
S O E V  

0.64356435C 00 
Oo6T894600E 00 

K 
C’ 
1 

69 
0,31683140E 00 
006931CBibE 00 

M E A N  
SUEV 

006R3\cd31E 00 
Oo465241196 00 

K 
0 
1 

71 
0.27722766E 00 
O.722f7211E 00 

t MEAN 
SDEV 

Oo722?72276 GO 
0.44762938E QO 

OoT3267326L C O  Om7425 Pt25E 00 Oo75247524E 00 
0*.44L55-+29t QO OdLU215B& OO-. Oo431574LSL 00 

K 
0 
I 

7 7 
0.23T62372E 00 
O.lb237509E 00 

7 8  7F 60 
0.2L772273E C O  0.21762L74C 30 Om20?9ZU76t 00 
0 . 7 7 2 2 7 7 0 9 ~  co 0 .782  ~ 7 ~ 0 i 3 ~  0 0  0 ~ 7 3 2 0 7 ~ 0 6 ~  0 0  

Om77221722E CO 0o7d217h21t  00 Oo73207920t  00 
01419362?4E 00 Oo4L??t561E 00 Oo40581983t  00 

HE AI4 
L O E V  
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Table 4 (Concluded) 
- ~ ...____ 
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Table 5 

THE PROBABILITY THAT THE MTH LARGEST AMONG 17 PAST 
OBSERVATIONS WILL BE EXCEEDED K TIMES IN 5 FUTURE TRIALS 

H 

1 
Oo77212721E 00 
uolS39EL69E UO 
0 . 3 C 7 3 c  5 3 5E-0 1 
G . 5 h C 3 S T 9 2 t - b 2  
0 , 6 4 5 5  5 324 i -03  
o0573???20F-04 

L 
O.Se374458k C0 
0 . 2 Y - 3 7 2 L 9 E  G O  
0.Y2YSY619f-01 
0 . 2 ut 57 7 u 4 t - U 1 

0.2 2 7  P 4 2  3 2 t -6 3 
0.30378 w 6 E - U 2  

2 

0,46155144li D O  
0.34n59 :?hE 00 
0.154932156 90 
0 .455  66 46 5t-0 1 

0.737 44 12 t -0 3 
O m d S 4 4 C 3 7  15-02 

ME A' i  
5 O E V  

0.d3333.333E 00 
Om3163tb00C OCJ 

ME A ' i  
S C E V  

0.13688i3d9k 01 
u.ll015358t Ul 

0.16666667t 0 1  
O.Li592539E G 1  

0.19444G44t 0 1  
O o L 1 3 Y 2 4 7 3 E  0 1  

LO 
0.30075 1 . 2 ~ - C  1 
0.12531327F 0 0  
0.25U62655t LO 
0.30075186E 00 
0.21720Yo8E 00 
o . ~ o u ~ ~ ~ ~ E - u L  

0. 3 3 3 3 3 3 3 3 t .  0 1  
0.11597533f 01 

K 
u 
1 
2 
3 
4 
5 

MEAN 
SCIEV 

O.44464444A 0 I 
0,17316930t G O  
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Table 5 (Continued) 

M 
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M 

Figure 6 - Interpolative Approximation, L = 16, N = 4, k = 0 
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? 10 11 
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. 

F i g u r e  7 - In t e rpo la t ive  A p p r o x i m a t i o n ,  L = 16, N = 4, k = 1 
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Figure 8 - Interpolative Approximation, L = 16, N = 4, k = 2 
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M 

. 

Figure  9 - Interpolative Approximation, L = 16, N = 4, k = 3 
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I * 

, 
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c 

- 4  

. 3  

.z 

. l  

.0 

F i g u r e  10 - In t e rpo la t ive  Approx ima t ion ,  L = 16, N = 4, k = 4 
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C 

M 

F i g u r e  1 1  - Interpolative Approximation, L = 16, N = 5, k = 0 
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c 

Figure 12 - Interpolative Approximation, N = 5, k =  I 
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I 8 8 4 0 T 0 

Y 

. . 1 .  

i R  
i t-t @ t t #Ti IO it 11 t I 

Figure 1 3  - Interpolative Approximation, L = 16, N = 5 ,  k = 2 
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P 

W 

Figure 14 - Interpolative Approximation, L = 16, N = 5, k = 3 
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F 

Y 

Figure 15 - Interpolative Approximation, L = 16, N = 5, k = 4 

. 

. 
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Figure 16 - Interpolative Approximation, L = 16, N = 5, k = 5 
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4.4 LISTING OF THE EDNE PBOGRAM 

B J O 6  LMSC C A R T E R  8 I N 2 0 2 * 4 7 0 6 5 0 * 0 0 ~ 1 2 * ~ 4 0 C €  
B E X E C U T E  I 8  J O B  
B I B J O B  
B I B F T C  M A I N  
C 
C 
c 
C 
c 
C 
r_ 
C 
c 

c 
c 

r L, 

C 

C 

C 

C 

THE EDNL PROGRAM 

THE E X A C T  D I S T R I B U T I O N  OF T H E  NUMBER O F  E X C t E D A N C E S  (EDNE) 
COMPUTER PROGRAM C A L C U L A T E S  THE P R O B A B I L I T Y  T H A T  T H E  MOTH L A R G E S T  
AMONG L PAST O B S E R V A T I O N S  W I L L  BE E X C E E D E D  K T I M E S  I N  N FUTURE 

O F  T H E  NUMBER OF E X C E E D A N C E S  ARE D E T E R M I N E D  FOR E A C H  V A L U t  OF M e  
T R I A L S .  THE MEAN NUMBER OF E X C E E D A N C E S  AND T H k  S T A N D A R D  O E V I A T I O N  

PROGRAMMER - M *  Me H A N S I N G  
S T A T I S T I C I A N  - N o  E *  R I C H  

D I M E N S I O N  P ( 2 0 0 * 5 1 ) *  X M E A N ( 2 O O ) r  STDEV(2OO)r V A R ( 2 O O )  
D I M E N S I O N  X ( 1 0 0 0 ) r Y ( l O 0 0 )  
D I M E N S I O N  B T I L ( 1 2 ) * S T I L ( 1 2 )  
D A T A  B T  I L / 6 H M  * 11+6H / 
D A T A  S T  1 L/6HP * 11+6H / 

DO 800 L=Ll  rL2 
DO 800 N = N 1 r N 2  
RL=L  
R N = N  
R L P N = L + N  
Q N D L P l = R N / ( R L + I * )  
R N D L P 2 t R N / ( ( R L + l o ) * w 2 + 0 )  
L 1 2 = ( L + 1 ) / 2  
NP l=N+ l  
L 12P I=L 12+ 1 

c 

46 
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P(I*I)=RL/RLPN 
C 

DO 30 M=l*C12 
RMtM 
XMEANtM) =RM+RNDLP1 
V A R ( M ) r R M * ( R L - ~ + l o ) ~ ( ~ P N + l o ) * ~ L ~ 2  
STDEV(M)=SQRT(VAR(M)) 

C 
DO 20 K = l r N  
RK=K- 1 

2 C  P(M*K+~)=(RK+RM)+(RN-RK)/((RLPN-RM-RK)+(RK+~O))*P(M*~) 

3 G  P(M+l*l)=(RL-RM)/(RLPN-RM)*P(M*l) 
C 

C 
DO 40 I=L12Pl*L 
Kl=L-i+i 
RI=l 
XME A N  ( I 1 =R 1 *RNDLP 1 
STDEV(I)=STDEV(Kl) 

DO 40 J=l*NPl 
K2sNP 1 - J+ 1 

C 

40 P( I J)=P(Kl*KZ) 
C 
C WRITE STATEMENTS FOR CONTROLLED OUTPUT 
C 
C 

WR 1 TE( 6 9  700 j 
WRITE(6*720) L*N 

WR I I€ ( 6 -  730) 
IF(L.CT.4) GO TO 400 

( 1 COL ICOL= 1 

L 

C 
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C 
400 I C O U N T t l  

DO 510 K F I R = l * L r 4  
K L A S T = K F I R + 3  
I F ( K L A S T o G T m L )  K L A S T Z L  
W R I T E ( 6 r 7 3 0 )  ( I C O L r I C O L = K F I R * K L A S T )  

c 
DO 500 I=lrNPI 
IROW=I-l 

5 u G  dRITE(6r74G) I R O W * ( P ( J * I  ) r J = K F I R * K L A S T )  
C 

~ R 1 T E ( 6 * 7 5 0 )  ( X M E A N ( J ) r J = K F I R r K L A S f )  
W R l T E ( 6 * 7 6 0 )  ( S T D E V ( J ) r J = K F I R * K L A S T )  
I F ( K L A S T o E O o L 1  G 3  TO 800 
WR I T E ( 6 9  710) 
I C O U N T = I C O U N T + l  
I C U T = ( N P 1 + 6 ) + I C O U N T  
I F ( I C U T o L T . 5 7 )  GO TO 510 
W R I T E  (6-700) 
W R I T E ( 6 r 7 2 0 )  L r N  
I COUNT= 1 

510 C O N T I N U E  

800 C O N T I N U E  

8(J1  I F ( O P T 2 o N E o l o )  GO T O  9999 

C 

C 

C A L L  CAMRAV (9 1 
DO 900 L=Ll rL2 
DO 900 N-NlrN2 
R L = L  
RN=N 
R L P N = L + N  
NP 1 =N+ 1 
NUMPTS = ( R L - l o ) / D E L M  + l o  
DO 1000 KP1 = l * N P l  
K = K P 1  - 1 
RK = K 
DO 1 0 1 0  I = I * N U M P T S  

! 
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R I  = I 
X ( I ) = l o + ( R I - t r ) * D E L M  
I F ( K o E Q o N )  GO T O  1020 
I F ( K o E Q . 0 )  GO T O  1030 
F A C l  = l o  

DO 1040 J = 1,K 
RJ = J 

NMK = N-K 
F A C 2  = 1 0  
A = R L P N - X ( I ) - R K + I .  
3 = R L P N - R K + I o  

134s F A C l  = ( ( R N - R J + ~ . ) * ( X ( ~ ) + R J - I . ) ) / ( R ~ + ( R L P N - R J + I O ~ ~ * F A C ~  

DO 1550 J = 1 * N M K  
Q J  = J 

Y C I )  = F A C l  * F A C E  
GO TO 1010 

Y ( 1 )  = X < I ) / ( R L + l o )  
GO T O  lo10 

DO 1022 J = I r N  
R J  = J 

GO T O  1010 

DO 1031 J = 1rN 
R J = J - l  

l L 5 C  F A C 2  = ( ( A - R J l / ( E - R J ) ) * F A C Z  

1020 I F  (NoNE.1) GO TO 1021 

1021 Y t I )  = 1. 

1 0 2 2  Y (  I) = Y (  I )*(RN+XC I )-RJI/(RLPN-RJ+I.) 

1030 Y ( 1 )  = 10 

1031 Y ( I )  = Y ( I ) * ( R L P N - X ( f ) - R J ) / ( R L P N - R J )  
1010 CONTINUE 

WR I T E (  6 9  770) 

CALL Q U I K ~ V ( - ~ ~ ~ ~ , ~ T I L I S T I L I - N U M P T S . X I Y )  

( X (  I 1 r Y ( 1 )  r I =1 rNUMPTS) 
770 F O R M A T (  6E17.8 1 

1 COG C O N T I N U E  
9116 C O N T I N U E  
7 0 C  F O R M A T (  1H1) 
7 1 G  F O R M A T ( / )  
720 F O R M A T ( 1 H  rllXr43HTHE P R O B A B I L I T Y  T H A T  THE M ' T H  LARGEST A M O N G i l 2 . r  
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1 1 8 H  P A S T  OBSERVATIONS/ /22X~27HWlLL BE EXCEEDED K TIMES I N *  1 3 6  
214H FUTURE T R I A L S / / / 4 6 X *  1HM) 

730 F O R M A T ~ l H ~ * I l X * l H K ~ I l O * 7 X * I ~ O ~ 7 X * I 1 C j * 7 X * I l O / ~  
740 F O R M A T ( 1 H  tgX*13*4E17 .8 )  
750 F O R M A T ( l H 0 * 8 X * 4 H M E A N 1 4 E 1 7 . 8 )  
760 F O R M A T ( 1 H  * 8 X * 4 H S O E V * 4 E ! ? e 8 )  

C 
9999 R E A D ( 5 r l l G )  I C A S E  

I F ( I C A 5 E . C T . O )  GO T O  10 
STOP 

1 1 G  FORMAT(413) 
1 1 1  F O R M A T ( 3 E 1 2 . 8 )  

END 
% D A T A  

16 16 4 5 
1. 1. 

2 
100100 1 1 

1. 
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Section 5 
SOME ASYMPTOTIC DISTRIBUTIONS 

There a r e  occasions when quick estimates are needed of the probabilities 

The exact distribution is always superior ;  how- of the number of exceedances. 

eve r ,  if a computer i s  not convenient, the necessary calculations may be 

forbidding. T o  this end, several  asymptotic distributions have been derived. 

In this section a r e  discussed the distributions of the number of exceedances ' 

over the larger  past values (small m) for two cases .  In the f i rs t  case,  the 

initial sample is small in comparison to the future sample (L c < N ) .  In the 

second case,  both samples a r e  large. 

5 . 1  INITIAL SAMPLE SMALL AS COMPARED WITH F U T U R E  SAMPLE 

Frequently, the past  sample is quite small as compared t o  the future 

sample, L CC N. Since N is large, the number of exceedances k and the 

proportion of exceedances q = k/N (0 5. q 21) can be considered as con- 
tinuous variables. The density function of k ,  f rom Equatiop (2.2-31, is 

The densi y functiLn of q then becomes 

N m ( & ) l N + l ) :  ( N q t m - l ) !  ( N - N q + L - m ) !  

( N t l )  ( N t L ) !  (Nq) ' .  ( N - N q ) !  h(q) = 

5 1  
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Subs t i t u t ing  S t i r l i n g ’ s  f o r m u l a ,  

and  combin ing  terms leads t o  

N -Nq+ L-m (N - N q +  L - m) N q t m -  1 ( N q t m -  1) N+ 1 

N - N q  
( N +  L ) ~ + ~  (NqINq tN - Nq) 

h ( q )  = 

Dividing n u m e r a t o r  and d e n o m i n a t o r  by N 2NtL (N3) 1/2 leads t o  

. (1 t +)(. - +) (1 - q t T) 
(1 t &) q ( 1  -9)  ””” 

A s  N becomes l a r g e ,  this tends t o  a form i n d e p e n d e n t  of N ;  

(1 - q)L-m , 0 5 q < l ,  N > > L  (5 .1 -1 )  qm- 1 
h ( q )  = m (k) 

. 

A 

Note  that this is the same d i s t r i b u t i o n  as that of Fm, as discussed in Sec t ion  2.2. 
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The expected value and the variance of q a r e  

m Elq) = - L +  1 (5.1-2) 

m ( L - m + l )  =r (q)  = 
(L + 112 (L + 2) 

(5.1-3) 

Thus, the asymptotic density of the smallest values (m = L) is 

, m = L  (5.1-4) 
L- 1 

h(q) = L q 

8 

8 

The distribution function 

L 
H(q) = q , m = L (5.1-5) 

gives the probability that up t o  q *lo070 of a future large sample will exceed 

the smallest value of the L past observations. 
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For the largest  value, m = 1, the asymptotic density and distribution 

function a r e  

, m = l  (5.1-6) L- 1 h(q) = L(1 - q) 

(5.1-7) 

Thus, the above formula gives the probability that at most a fraction q of a 

future large sample will be greater than the largest  or  less  than the smallest 

of a past sample of s ize  L .  

5.2 INITIAL SAMPLE AND FUTURE SAMPLE BOTH LARGE 

At t imes both the past and the future samples a re  large. A different 
asymptotic formula must be derived for this case. 

The probability density f rom Equation (2.2-4) 

NtL-m-k k t m -  1 ( L-m )( m - 1 )  'F p ( L , m , N , k )  = 

can be written as  

k+m-1 ( N t L - m - k ) !  L! N !  
p ( L , m , N , k )  = ( m - 1 )  ( L - m ) !  ( N - k ) !  ( N t L ) !  

By Stirling's formula, 

J! = J~ e-J  d T Z  , 

~ 
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the density is approximated by 

11/2 I 
( N + L - m - k )  L N  

( L  - m ) ( N  - k)(N t L) 
N+L-m-k LL NN ( N t L - m - k )  

L-m (N - k)N-k (N t L)N'L (L - m) 
p (L ,m,N,k )  = 

A s  N and L become large, the last factor goes to  one. 

r e a r  ranging, 

Thus, 'after a bit of 

1 NtL-m-k (N t L - m - k) L-m N-k 

( L + N ) ~ + ~  (L - m) (N - k)N-k ( N  t L) 

LmNk ][ L L-m N 
NtL-m-k 

If m and k a r e  kept smaii L and N iiicrease, the density approaches 

p ( L , m , N , k )  ( 5 . 2  - 1) 

Note  that this formula should be used only for small values of m. 
~ 

The probability that the rnth largest value is never exceeded ( k = 0 )  in 

N future observations i s  

p(L,m,N,O) z ( - N:L)m (5.2 -2) 

The probability that the largest value ( m =  1) will be exceeded k times is I 

p(L, l ,N ,k )  ( 5.2 - 3) 

In the case of equal sample sizes, N = L ,  Equation (4.2-1) becomes 

k t m -  1 
p(L, m, L, k) = ( m- )( $m+k (5.2 -4) i 
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Since rn is small compared to  L, this is called the law of r a r e  exceedances. 
For L=N, the probability that the mth largest  value will never be exceeded 

( k = 0 )  is  

(5.2-5) 

J 

The probability that the largest  value ( m =  1) will be  exceeded k t imes is 

ktl 
(5.2-6) 

kly procedures similar to those used in the derivation of Equation (2.3-1) 

and Equation (2.3-2), it can be shown that for N = L the mean and variance a r e  

E(k) = m (5.2-7) 

var(k) = 2m ( 5.2 - 8 )  

. 

i 
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Section 6 
CONCLUSIONS 

l 

The theory of exceedances should be applied in  cases  in which the prob- 
ability of surpassing a previously attained value is of importance. 

example discussed in Section 2, the value of 60 knots was considered as 

critical, exceedances theory could be used to  give the probability of exceeding 

the cri t ical  value in future events. 

If, i n  the 

As another example, in a study done by the Systems Optimization Section 

of LMSC/”KEZ for XASA, I:-AER(>-IMP, the amount of flight propellant 

reserve  ( F P R )  to  be carr ied by a future Saturn missile was to  be decided. 

Oiie huzdred fl ights with different values of perturbations in flight parameters 

were simulated on a high-speed computer and the necessary F P R  for  each 

flight was calculated. 

mate of the amount of reserve fuel needed for any one future flight. According 

to Table 4 in Section 4.3, the pruba2ilit.ty cf exceeding the largest  of the 100 

F P R  values in  a future run is .0099. 

The largest  of these was taken as a conservative esti- 

The theory of exceedances c a n  thus be t ~ s c d  !c,r bot!. real  and simulated 

data. It should not, however, be applied to  cases in which the population 

distribution is of importance, e.g., for estimating the population mean o r  

variance . 

a 
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